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Abstract - This paper addresses the etfects of size (both length and width) on the probability
distribution for strength of a composite consisting of brittle fibers aligned in a brittle matrix. The
failure process involves quasi-periodic matrix cracking. frictional sliding of the fibers in fiber break
zones. and fiber bridging of matrix cracks in a global load-sharing framework. The fiber strength
follows the usual Poisson Weibull model of random flaws along the length. We first consider a
composite cross-section. and develop the probability distribution for its strength in terms of certain
characteristic tiber strength and length scales and the number of fibers in the cross-section. This
strength distribution turns out 1o be a Gaussian distribution. We also calculate refined estimates of
its mean and standard deviation. taking advantage of some new results based on an exact closed
form solution for fragmentation of fibers in a single filament composite. We then consider the
strength of a composite having a length orders of magnitude greater than the characteristic fiber
length. We develop predictions for the scaling of the strength vs composite length based on certain
results from the statistical theory of extremes in Gaussian processes. For this we develop an estimate
of the covariance between the strengths of two nearby cross-sections of the composite. We also
develop results based on a weakest-link analysis in terms of composite links of a certain length
somewhat shorter than the characteristic fiber length. We then favorably compare our analytical
results to numerical results from a Monte Carlo simulation of the composite failure process. This
Monte Carlo model 15 frec of various assumptions made in the analysis. The comparison suggests
that predictions of u composite strength are possible tor composite lengths orders of magnitude
bevond what Monte Carlo simulation programs can currently handle. Copyright © 1996 Elsevier
Science Lid

1. INTRODUCTION

In recent years considerable attention has been paid to understanding the strength of brittle-
matrix fibrous composites. that is, composites consisting of a glass or ceramic matrix
reinforced by ceramic fibers in parallel. Addition of such fibers to a brittle monolithic
matrix drastically changes the failure process away from one of extreme flaw sensitivity
and vanability. modeled reasonably well by Weibull-weakest volume statistics, to one of
quasi-ductility. where the micromechanics of the failure process involves complex fiber and
matrix load interactions and requires more sophisticated statistical modelling. Curtin (1991)
describes the basic micromechanical assumptions of the model and introduces some key
statistical ideas. As a foundation to the present work. the statistical ideas are developed
variously by Phoenix and Raj (1992). Phoenix (1993), Curtin (1993). and Ibnabdeljalil
and Phoenix (1995). A time dependent version. where fibers undergo creep rupture. was
developed by Ibnabdeljalil and Phoenix (1993).

Briefly, the basic assumptions are: (i) quasi-periodic cracking of the matrix occurs
perpendicular to the fibers and reaches saturation at stresses far less than the ultimate
composite failure stress so that the matrix supports negligible tensile stress but transmits
shear stresses laterally among fibers: (ii) a relatively low interfacial shear strength at the
fiber-matrix interface exists (i.e. a constant interfacial shear strength) so that fibers slide
frictionally within the matrix both within the matrix crack zones and near fiber breaks;
(iti) fiber bridging of the matrix cracks occurs with redistribution of the original matrix
stress and the stresses of broken fibers “globally” or uniformly onto surviving fibers: and
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(1v) as the load on the composite is increased, strain localization eventually develops around
some cross-sectional plane that is statistically weaker than all the others, and the composite
pulls apart as the fibers all break near that plane and pull out. The fiber strength is assumed
to follow Poisson Weibull behavior having the usual weakest-link features. Also initial
(before load application) Poisson random breaks can exist along the fiber with rate /. per
unit length as studied by Phoenix and Ibnabdeljalil (1995). though in this paper we will
focus on the case ~. = 0.

Statistical analysis for the model builds on first considering the probability distribution
for the strength of a composite segment of a certain characteristic fiber length J, and having
#n parallel fibers. The strength ¢ is normalized by a certain characteristic fiber stress o..
More specifically. the focus is on the normalized stress carrying capability of the segment’s
central cross-sectional plane and determining its probability distribution. The strength of
this plane and the composite of length 9, are taken as approximately equal as 1 becomes
large. Generalizing the statistical ideas ol equal load-sharing among # non-failed fibers as
pioneered by Daniels (1945). to "global” load-sharing where the slip zones next to a fiber
break carry some load. Phoenix and Raj (1992) argued for an approximate normal (or
Gaussian) distribution for the strength of this plane. They also discussed various approxi-
mations to the asymptotic normalized mean strength p*(n — ), and considered small
positive corrections to the asymptotic normalized mean A¥ (decaying as # ~') so that
WF= p*+ A¥1s a more accurate representation of the mean strength for finite n. They also
discussed approximations to the asymptotic normalized standard deviation ;¥ (decaying as
i ') All of these results were for the case » = 0. The approximations all tend to agree
and work well for a large Weibull shape parameter p for fiber strength. but as [bnabdeljalil
and Phoenix (1993) have demonstrated using a Monte Carlo simulation model of the failure
process. they diverge and lose accuracy for p < 4. and the errors typically become large for
p < 2. The major reason is that exclusion (shielded) zones around fiber breaks. where
no further breakage can occur, are not properly accounted for in the approximations.
Nevertheless. the strong tendency to a normal distribution for the strength of the composite
segment of length 0. was demonstrated. Some of these weaknesses in the various approxi-
mations can also be seen in the earlier Monte Carlo calculations of Curtin (1993).
Ibnabdeljalil and Phoenix (1995) extended many of these approximations to the situation
including mitial discontinuities along the fiber (4 > 0), and again. inaccuracy arose
as 2 way increased such that the mean spacing of the nitial breaks decreased to the order of 4,.

To model the strength distribution for a composite of length L, orders of magnitude
longer than J.. one idea has been to consider the composite to consist of a long chain of
m = L J. segments (global load-sharing bundles). each of length 4, (Phoenix and Raj,
1992). The composite then fails when the weakest segment fails, and its strength distribution
H,. o a.) 1s that of the weakest segment. The normalized strengths of the individual
segments are (reated as though they are independent and identically distributed (i.i.d.)
random variables following a normal distribution with mean g and standard deviation
% that is. the strength distribution of an individual segment 1s ®({(g;7 ) — ¥ ) where @
is the standard normal distribution. The independence assumption seems reasonable since
segments more than &, apart would appear to have negligible statistical interaction. Thus
we would have H,, (0:0) 2 1 —[1 =D([(6.5. ) — 1} 79]" based on weakest-link analysis.
Taking advantage of well-known results in extreme value theory for a long sequence of
1.1.d. normal random variables, Phoenix and Raj (1992) gave the asymptotic (»m — )
double exponential approximation for the strength distribution of the full composite
H, (o ) of length L. They also modified this result to yield a Weibull approximation for
composite strength which is asymptotically equivalent (# — x) and perhaps more useful.
An early reference on the chain-of-bundles approach in materials failure 1s Giicer and
Gurland (1962). Smith and Phoenix (1981) give some rigorous results for the strength of
chains of statistically independent bundles of the Daniels type in that they quote precise
conditions for proper convergence to the double exponential distribution in terms of
increasing m and n. The intent was to get some idea of the accuracy of the extreme value
approximation to H, J(c;c ). especially when s is large and # is small. No similar rigor,
however. exists for the present model under global load-sharing.
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While the above methodology has some foundation, it is based on various approxi-
mations. and questions naturally arise as to its accuracy. First. in the case of the simpler
chain of equal load-sharing (Daniels) bundles. Phoenix and Raj (1992) give numerical
results to suggest that the double exponential approximation to H,, ,(g/c,) 1s actually quite
inaccurate for moderate bundle size /7 and large m especially in the lower tail (probability of
fatlure of. say. 10" ®). Yet this. unfortunately. is where one would want to make predictions
regarding high reliability of the composite. The Weibull variant of this approximation fares
only slightly better. Fortunately both approximations appear to be conservative. Part of
the difficulty is that the distribution for bundle strength is only approximately normally
distributed. but 1t seems also that the double exponential distribution converges rather
slowly as an asymptotic form (as m and n — » ). having an unrealistic shape in the lower
tail. Second. it hus been assumed that the effective bundle length (or length over which the
strength of a given cross-sectional plane reasonably applies) is . and that necighboring
bundles along the chain are truly independent statistically. Thus far. there has been no
good way to test these assumptions. Actually. for cross-sectional planes taken continuously
along the composite. one might expect the strength at these planes to vary smoothly
along the composite as approximately a Gaussian process, and that there should be some
characteristic correlation function for strength in terms of distance between planes. Despite
these unanswered questions, Curtin (1993) has performed some limited Monte Carlo
calculations that suggest that the above methodology is reasonably accurate.

In what follows we will address the above issues. developing improvements to the
various approximations that we will test against results from extensive Monte Carlo simu-
lations. The goal is to determine improved torms that perform exceptionally well even in
the lower tail (smaller ¢ ¢,) of the cumulative distribution function H,,,(o;0.) tor long
composites L. = md,. First, we will calculate refined approximations to the asymptotic
normalized mean x* and the standard deviation -} of the strength at a cross-section. taking
advantage of some new results based on an exact closed form solution for fragmentation
of fibers in a single filament composite. as obtained by Hui ¢r al. (1995). These approxi-
metions will work well for virtually all p > 0. We will focus on the case ~ = 0. though the
results can easily be extended to the case ~ > 0 using results in Hui er «f. (1995). We will
also give an estimate of A¥ the correction to the asymptotic mean g* to yield p* Second.
we will estimate the covariance function, later called T (v*) n. for the strengths of two
cross-sectional planes separated by a small normalized distance ¢ and where s* is a nor-
malized fiber strain at cross-sectional collupse. With this covariance function in hand. we
will be able to use results given in Leadbetter ez o/, (1983) for minima in Gaussian processes
to determine the revised scale and location parameters for the double exponential approxi-
mation to the composite strength distribution H, (7 a,) given in terms of . o p*. A¥ F
and I,(s%) n.

We will also consider an alternative approximationfor H,, (7 a,) based on the weakest-
link form H, (6 6,) x 1 —[1—®*([(d a,) —u¥ ~5]" where m’ = m [ and where the link
length 1s taken as 6, for some constant 0 < f < 1. which we try to estimate. In this
weakest-link formula. we use an explicit and accurate approximation @* to the lower tail
of the Gaussian distribution representing the strength of a link as given in Cramér (1946).
Its parameters are based on the location and scale parameters just mentioned for the double
exponental approximation. We will finally compare these approximations favorably to
numerical results from a Monte Carlo simulation model of the failure process. a model that
is actually free of many of the assumptions made in deriving the approximations. We will
also compare the weakest link and double exponential forms in terms of their accuracy in
modelling the Monte Carlo distributions for strength at various composite lengths.

In Section 2 we introduce some basics of the model including the key scalings and
normalizations for strength and length. In Section 3 we determine improved approximations
for both the asymptotic mean g* (including a new quadratic approximation valid for very
small p > 0) and the standard deviation -* and determine an estimate for the covariance
function I';(s*)-11. In Section 4 we develop the improved approximations for the distribution
function for composite strength. H,, (o a.). In Section S we compare these approximations
to numerical results from Monte Carlo simulation. We close in Section 6 with some
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conclusions. The Appendix contains some analytical details of determining a Taylor series
approximation for the asymptotic mean p* for very small p > 0.

2. BASIC MODEL AND SCALINGS FOR STRENGTH AND LENGTH

In this section we outline some of the basics of the model including key parameters,
scalings and normalizations. For more details consult earlier works (Curtin. 1991 ; Phoenix
and Raj, 1992 Curtin, 1993 ; Ibnabdeljalil and Phoenix, 1995).

We assume, that prior to any loading, flaws occur along the fiber according to a
compound Poisson process in distance where the average number of flaws per unit length
with strength less than ¢ is given by

Alo) = (1L, oa,)". (nH

This leads to the usual Poisson-Weibull model for fiber strength where @, > 0 is the Weibull
scale parameter relative to a test length /, of a continuous length in simple tension. and the
exponent p > 0 1s the usual Weibull shape parameter or modulus.

Around a fiber break or discontinuity at which the fiber stress is zero, the fiber length
required to linearly build up to the far field fiber stress o (basicallv the fiber Young’s
modulus times composite strain) is the shp length

(o) =ro (21) 2)

where r, 1s the fiber radius and 7, is the interfacial shear stress due to friction. Note that
within this length. the fiber stress cannot be increased further so that no more breaks can
occur: that 1s. the fiber is ‘shielded’. In the failure process for the fibers we retain the
normalizing scales for strength and length used in previous works, namely

Q
i

O'“:T‘/.. (”(»"/);’I“Hl‘ (3)

and
o =L jogr Uy )t (4)

A simple interpretation of these scalings is that at the tiber stress level o, the mean number
of Weibull flaws over the length o,. which have strengths less than or equal to g.. is exactly
one. Also at the stress level ¢.. the length &, is exactly double the slip length /(s.). that 1s,
it 1s the total length around a fiber break where the stress 1s reduced or shielded.

These scales allow us to normalize all lengths by J, and all stresses by ¢,. Thus. we
define a normalized stress s by

N=00. (5)

and distance is always actual distance divided by 0,. Then the mean number of flaws per
unit dimensionless length at the dimensionless stress s is

Als) = s, (6)

Furthermore. with these normalizations the slip zone on each side of a fiber break is s/2
when the normalized fiber stress is s.

With this review of some basics, we turn in the next section to the work of Hui e al.
(1995) for some exact results on the statistics of fragmentation of fibers along a single
filament composite. This is because in a composite with a large number of fibers (n — o)
we can think of each fiber as contained in an effective medium of fibers and matrix acting
like a "matrix” in the single filament composite. This idea will allow us to calculate some
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statistics for the effective load carrying of the tibers in the composite as the far field fiber
stress s (or composite strain) is increased. As the composite strain is increased, the hazard
rate for new breaks appearing with increasing s 1s

hisy = dAs)ds = pst s> 0. (7)

However. the main complication in the analysis is that new breaks cannot occur in slip or
shielded zones around old breaks. Also the stress carried by a fiber in a shielded zone 1s
reduced depending on the distance to the nearest break. and shielded zones may overlap.

3. STATISTICS FOR COMPOSITE STRENGTH AT A CROSS-SECTION

Following the theme in earlier work (e.g. Phoenix and Raj, 1992: Curtin, 1993) the
basic idea in analyzing the strength of the composite is to consider an applied far field fiber
stress s, and consider the statistics of the load carried on a cross-sectional plane in terms of
nearby breaks. that is. breaks close enough to the plane so that the load in the associated
fibers would be reduced at that plane. The first quantity of interest is the asymptotic mean
normalized stress function p(s) for a large composite (n — ) given s > 0. (Note that we
ignore the tensile load carried by the matrix. which is typically negligible, and focus only
on that in the fibers. Also the true “effective” composite stress is really the stress we will
calculate tmes the fiber volume fraction, /. This is to be understood in all our calculations.)
Essentially. the main step is to determine g(s. v). 0 < v < . the probability density function
for the absolute distance from the plane to the nearest break along a given fiber. Then u(s)
1s seen to be

~ "
\

sy =s | gsoordv+ » 2rg(s.vyda. (8)

vy 2 VO

where the first contribution corresponds to fibers that are not slipping (recall that the slip
length is 5:2) and the second contribution is the average stress of slipping fibers (a fiber at
normalized distance y from a break is carrying normalized stress 2v). In earlier works only
approximations to u(s) were calculated because ¢(s. v) could only be approximated.

To determine p(s) exactly, we turn to the analysis in Hui er al. (1995) and consider the
quantity p(s, x). which is the density function for the number per unit normalized length of
inter-break spacings or fragments of length v under far field stress s. That is, in a fiber of
length L. the number of fragments with lengths between v, and x, is. asymptotically.

Y

L| pls.x)dy (9)

vy

as L grows large, and the normalizing condition 1s

~

|

s

apls.x)dy = 1. (10)

il

Y

Hut er al. (1995) give an exact, closed form solution to p(s. x) (their eqn (21) in general and
their (36) with (35) for the case at hand). It 1s easy to see that xp(s. v) d.x is the probability
that an arbitrary fragment cut by the cross-sectional plane of interest has length between x
and v +dx. and that the distance to its nearest end is uniformly distributed over 0 to x/2,
50 that
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g(s.y) (2. x)ap(s.x)dx

pls,)ydy, 0<r< >, (11)

2

Thus, pu(s) can be calculated by combining (8) and (11) and the result for p(s, x) given in
Hui er al. (1995) as just mentioned.

Another way of calculating u(s) is to travel along a given fiber. and to calculate the
average fiber stress, which will be less than s since there are regions of the fiber near
occasional breaks that are partially unloaded. Now. a segment of length 0 < x < s carries
average fiber stress v:2 (as its load profile is a triangular shape), whereas a segment of
length v > s has a central portion of length v—ys where the stress is s, and end pieces
totalling length s where the average stress is s:2. Thus, we obtain

"

uis) = [ (= 2)ps vy dy+s V(v —3) 45,2 pls. vy dy (12)

v RE
This result is quickly seen to be equivalent to (8) combined with (11) upon exchanging the
order of integration.

Next. we turn to calculating the variance function I',(s),# for a composite cross-section,
were T'y(s) 1s the variance in the stress of an arbitrarily selected fiber at that cross-section.
(Note that we are altering slightly the notation in earlier papers (e.g. Phoenix and Raj,
1992).) This is the expected value of the square of the fiber stress at a cross-section minus
the square of the mean fiber stress pu(s). Following the steps used in deriving (§) we get

~, P

Co(s) =37 | gls.r)dy+ (21 g(s. vy dy — u(s)

Ji2 v

(13)

On the other hand. we can travel along a given fiber. and calculate the mean square of the
fiber stress (which will be less than s° since there are regions of the fiber near occasional
breaks that are partially unloaded) and then subtract the square of the mean u(s)>. In a
segment of length 0 < ¥ < s the average value of the square of the fiber stress is x'/3 (since
1ts load profile is actually a triangular shape), whereas a segment of length x > s has a
central portion of length x —s where the stress is 57, and end pieces totalling length s where
the average square of the stress is s°:3. Thus we obtain
Xpeux)ydy+st | xp(s, ) dx

R

Fo(sy=1(1.3)

Jo

~

—(2 st ‘ / pls.x)dy —p(s)”. (14)

o

Note that (13) combined with (11) is equivalent 1o (14) as can be seen by exchanging the
order of integration.

There is one more function that we need to estimate, which is called the covariance
function I',(s):n for the stress at two composite cross-sections separated by a normalized
distance ¢ > 0 and where again the far field fiber stress is s. Note that é will be scaled in
terms of s because s is also the normalized exclusion zone length around a break. The
covariance function [ {s) is the expected value of the product of the stresses at the two
cross-sectional planes minus the square of the mean u(s)". and captures the key information
on the correlation between the strengths of two nearby cross-sectional planes. Actually its
local behavior for small & is what is needed in determining the probability distribution for
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the weakest plane in the composite over length L = md,. using asymptotic theory for
Gaussian processes given in Leadbetter er al. (1983).

Unfortunately, we cannot calculate this covariance function exactly because we do not
have the joint distributions of the lengths of two or more adjacent fragments, and. in
particular. we do not known if the lengths of adjacent fragments are statistically dependent
or independent. Such a calculation would require greatly expanding the scope of the
differential equations in Hui e af. (1995). On the other hand, on the basis of Monte Carlo
simulations, Henstenburg and Phoenix (1989) saw negligible correlation in adjacent lengths.
Thus we will take a simple approach along the lines used by Phoenix and Raj (1992) in
developing their “first” approximations subscripted by ‘1", In essence we assume that the
breaks approximately follow a Poisson process along the length with a certain rate $(s)
depending on s chosen specifically to give us the correct variance result, I'y(s). for the special
case o = (. That is, the fragment lengths are assumed i.1.d. with an exponential distribution
function with parameter 3(s). (The Poisson process assumption is actually valid for small
s.) We never really have to calculate 3(s) since it 1s buried in ['y(s), which we know. Our
main result will turn out to be very simple.

Now the zone of interest spans from a distance 5.2 to the left of the first plane to 5.2
1o the right of the second plane. so it has a total length of o +5. Under our Poisson process
assumptions the number of breaks in this length follows a Poisson distribution. and given
there are j > 1 breaks, these breaks are 1.1.d. following a uniform distribution. Consider the
case of no breaks occurring on this length. The probability of there being no breaks is
exXp | —3(s)(0+s)|. and in the case the fiber carries load s at both planes so the product 1s
5. Thus the contribution to I'.(s) is

C,=s"¢xp| =M+, j=0. (15)

On the other hand. suppose that exactly one break has occurred over the fiber length
d+s. The probability is Hs)(d+s)exp | — 3 (sHd-+s) ). and we can take the break to be
uniformly distributed over this length. Then this break can unload one. or the other. or
even both of the planes depending on its longitudinal position. Now let = be its position
relative to the midpoint of the length 0+ 5. and assume ¢ < 5 2. Then the product of the
fiber stress at each plane is

—(0+22)s for —(0+s)2<z<(d—y) 2.

—(0+22)(0—=22) for (0—s5)2 << —0.2,

(0+22)0—-22) for —02<z<o2.

—(0+2z00=2z) for 02 <z <(y—0)2,

—s(0—2x2) for (v—0) 2 <z <(d+5)2.
Thus using this simple uniform distribution. the expected value of the product of the stress
given one flaw is
25(5— )0 (04 3)+ 205 6—573 24207 3) (O+5)+(20° 3} (0+3)

=" 3 +235=8(53:9) + 035"}

So. the contribution to I',(+) is

Cy = (31 =20 s—8(5 %)

+OUd ) PASHO+s)exp | —HsHo+s)] . j=1. (16)

In principle we could continue with / = 2, 3. ... but the calculation becomes exceedingly
complicated. For larger p. however., it turns out that the probability that j > 2 becomes
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negligibie. and in any case more breaks means even lower stress products because of more
unloading. So we can replace (16) by the overestimate

Co=(57/3) 114 28/s—8(d:s)”
+O((3/5) ) I —exp { —HsHo+s)}]. =1 (17)

Summing the two quantities in (15) and (17). the expected value of the product of the load
at the two planes for small § and large p 1s approximately

Co+~Cy=s7exp | = Hs)O+3)) + (57 3) ' 1+ 20/

2

—8(3.5) + O )] —exp | —F(sHI+5)]]. (18)
Now we need to expand this further to isolate the eftect of 8. To this end we note
exp | —Hs)O+5)] T exp | —Ha)s) [T —3s) 3} (19)
so that (18) becomes
Co+Croxsmexp [ =3 + (& BT —exp | —3s)s)]
— (257 B)oHy) exp | —F()s!
+ (25 3) [l —exp | —d(s)s)]

—~ (837 3)[i—exp | —Hx)st] (20)

Now. to estimate the covariance T',(s) we must subtract the square of the mean fiber
stress. First. we let

Fio) = l—exp | —Hy)s]. s =0, 2n

Then. from Phoenix and Raj (1992). a good estimate of the mean 1s
pis) = s 1 —=F(s): 2. (22)
(Numerically. (22) and (12) agree very closely for p > 5 as indicated in Hui e af. (1995).)

We use this estimate because of its analytical simplicity in the present calculation. Thus we
can write an estimate of [';(s) as (20) minus (22) squared, which is

14

Cas) x 87 11— F(O) + (57 DFs)—s {1 = F(s),2)"

— (257 3)03(s) T — F(s)) + (25 3) 3F(s) — (87 3)F(s)

R 3—-Fls)T 4)
— (257 3)03(s) 1 — F(5)) 4+ (25 3) OE(s)
— (837 3)F(). (23)

From Phoenix and Raj (1992). the first term in (23) is a good estimate of the fiber variance
function I',(s) given by (14), that is,

[o(s) = 57 LK) 3— F(s)- 4! (24)

as we see from later numerical comparisons. Thus we can write
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Io6s) = Tao) T—[(2573) M) T — F(s)) — (25:3) OF(s)
— (87 3V FW)] [ LF(s) 3—F(s)" 4]} (25)

Finally we estimate the term in the large square brackets. First we use the approximation
F(s) x J(s)s noting that at composite failure this quantity 1s small for larger p. Upon
expanding in J(s)s we approximate (25) as

F9) = Do) ] RS )"+ 006 s3] (26)

where terms linear in ¢ have cancelled. and we have neglected terms in [ 3(s)s}-. This
estimate will suffice in later analysis.

The next quantity of interest is the maximum of the asymptotic mean stress u(s) called
(. and is the composite stress where the load strain curve begins to decrease in a composite
with an infinite number of fibers # (where we recall that the strain is approximately s divided
by the fiber Young's modulus). That is.

P =max () 5> 0] (27)

The corresponding value of s is called s¥. 50 p* = pu(s*). As soon as s exceeds s*o.. the
composite will fail by fiber pullout at some collapse plane. No simple closed form expression
for s* 15 available. but carrying further an idea in Hui er a/. (1995) we find that a very
accurate approximation faor all p > 0 turns out to be

SR e D) e+ (28)

Actually. this expression is asymptotically correct for both large p and for p near zero.
Figure 1 plots this approximation against the exact solution numerically calculated in Hui
et al. (1995). and the accuracy 1s seen 1o be exceptional.

As pointed out by Hui ¢r af. (1995) there have been many attempts in the literature to
estimate y*. All of the methods work well for p > 10. but even the best methods seriously
diverge from the true value (usually overestimating p*) for p < 2. (See Fig. 5in Hui ¢/ al.
(1995).) These authors have obtained the three term asvmptotic expansion

Weibull Modulus. p

e,
S 1hr0
.

9 N e rerrn 20
r \ 15
. AN — - Exact Solution. Fui e of 1895 )
T r - s'=[(27p)4p~R)/ (4 DY « -
r {10
; \\
. \\ -5
. ) : R
~ L \\ . n
= s N
: N |
~ = [ AN
SIS b N
: ~
0cf S
L e
,C:’) EL—_‘A'4 i | 1 L L R i
-3 2 -1 3 1 Z 3
In(p)

Fig. 1. Plot of fiber stress +* (outside of the unloading loading zone around a break) at composite
collapse vs Weibull shape parameter p. Shown are the exact solutton from Hui ¢r al. (1995) and
approximation (28).
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W= p(s*) X s*[L R V2 0% T exp g T (] —as* 0 UR)Y) (29a)
where
s=pp+]) (29b)
and
0= 1(Tp~12) 2p+3) 24, (29¢)

and this has less than 1% error for p > 3. Even at p = | the error is only about 8% low.
On the other hand. we show in the Appendix that a Taylor series expansion for p near zero
results in

W) x 109227843350+ (1 2)1.534948649p° + O(p*) (30)

being consistent with the analytical fact that g* = 1 at p = 0. Figure 2 plots these approxi-
mations against the true p* obtained numerically by Hui er al. (1995). (Actually, they
calculated no values for 0 < p < 0.5.) Thus we have excellent approximations for y* say
forO0 < p < 0.2and p > 1.5, respectively.

Next we evaluate the asymptotic. normalized. standard deviation for a composite
cross-section. This is denoted ;¥ and it is given by

DU BNl I S 30

Thus we must evaluate I'j(s) at s = s*. This was done for p = 0 by numerically integrating
in (14). Apart from u** = p(s*)°. which is already evaluated. there are three integrals to
evaluate. namely
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Fig. 2. Plot of normalized asymptotic mean strength g* for composite vs Weibull shape parameter
p. Shown are exact solution from Hui ef ¢f. (19935) and approximations based on large p (29) and
small p (30) behavior
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[, = | x'pls.y)da. (32a)
Ju
I/, = ‘ Ap(s. ) dy, (32b)
and
/‘/
I, =] pGov)dy. (32¢)

Thesc may be computed by brute force techniques. but they are computed much more
efficiently using expansion techniques as described in Section 5.4 of Hui er a/. (1995) for
computing x*. Figure 3 shows a plot of 7%:1' = = 'T',(s*)]' ~. Also shown is an approxi-
mation for {I,(s*)!"'* based on one in Phoenix and Raj (1992) where I'y(s) is given by (24)
with F(s) given by (22). From that work we take the simple approximation

F(5F) T 9 (8F) = oM (33)

and we take s* as given by (28). Figure 3 shows that this approximation works extremely
well for p > 0.8.

Lastly we determine a refined mean pf and standard deviation 7. respectively. appli-
cable when # is fairly small. The refinement for the mean, discussed in Phoenix and Raj
(1995).1s

W= u* - A¥ (34)
where

Az 7 (p 3pe¥ -

"

BT p) 3% 2 ()R] -2y (35)

and s* can be taken as (28). For p > 4. itis roughly 0.251 - “and thus for # = 50 it amounts
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to about 2 or 3% of u* and for n = 15 it is about 5 or 6% of u*. Its effects will be noticeable
in later numerical results.

A corrected standard deviation »* has not been derived for the present model under
global load-sharing. However, we belicve it js reasonable to adapt a result for classical,
equal load-sharing bundles as given in McCartney and Smith (1983), and expect this result
to give the proper scaling in n and to be close to the proper magnitude. Their revised
standard deviation can be written as

It

S = O30 iy et (36)

where. in their case. g* and ¥ are the mean and asymptotic standard deviation (large n)
appropriate to equal load-sharing bundles. In the present context we take p* to be given
by (27) or the approximations (29) or (30) as appropriate and ;¥ to be given by (31) or
subsequent approximation as appropriate.

Thus we have developed the key quantities in determining the strength distribution for
a cross-section. The final assertion is that the strength at a cross-section is approximately
normally distributed with mean g and standard deviation %, and, furthermore, that the
covariance between two planes d apart is given by Ty(s*) | 1 —8(d:5*) 4+ 0[(d/s*)°]} /n. Thus
we have the main quantities enabling us in the next section to use certain results on minima
in Gaussian processes, in order to estimate the distribution for strength of a long composite.

4. ASYMPTOTIC DISTRIBUTIONS FOR THE STRENGTH OF LONG COMPOSITES

We are now in a position to use some results given in chapter 8 of Leadbetter ef al.
(1983). particularly theorem 8.2.7 which allows us to construct an asymptotic approxi-
mation to H,, (o a,). the distribution function for the strength of the composite. (See also
the comment at the beginning of their chapter 11 to adapt results for the maximum to the
minimum.) Our covariance function (24) has the structure assumed in the analysis there,
with the correspondence being between their (1) and our I',(s*)/n where their t is our ¢
and where their 2. 2 is our 8 s* in (26). Their theorem also assumes a mean of zero and a
standard deviation of one, but we can change the location parameter by p* and rescale
through multiplying by the asvmpiotic standard deviation o to use their results. In
particular we let

a,, = = 2log, (m)]' - (37a)
and
b, = W22 log, ()] = —log, (s*7 2) [2log, (m)]' 7). (37b)

(Note that our «,,, corresponds to their | «, and our 5,,, corresponds to their ;) Then
the approximation to H,,, (¢ o) is the double exponential form

H,cdo)xl—exp,—expillc o )—b,.] dy, . =0 (37¢)

As an estimate of the median. o}, (composite stress at probability of failure
H,(oc0)=12)is

ok, 0. x w7 2log. (im)]' " —log, (s*m 2)/[2log, ()] ”

—log, (log. (2)) [2log, (m)]" *}. (38)
The approximation (37c) has shortcomings in accuracy especially in the lower tail where it
overestimates the probability of failure. so we now pursue a different approach that turns
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out to perform very well. (The above results will be referred to as the Gaussian process
version.)

In the last section it was mentioned that the strength at a cross-sectional plane is
approximately normally distributed with mean ¥ and standard deviation 7*. Thus we
consider the standardized stress variable

==o o) =il (39)

The standard normal density function (which has mean zero and standard deviation one)
is

Py =02m Cexp(—2) —u << % (40}

and its cumulative distribution function is
O(o) = Gix)dy, -7 <z < %, 41

For the lower tail of ®(2). suy for - < — 1. Feller (1968) gives the result
o =127 (o) < Do) < o) |2] (42)
Thus we can approximate the lower tail of ®(z) by
O*(z) =(2m) "Cexp(—z7 2)yzl. -« 0. (43)

Recall that H,,, (¢ ¢,) is the distribution function for the strength of a composite of
normalized length m = L o.. Letting m" = m f§ for some fixed constant > 0. and using
the approximation (1 —®*)" = exp (—#»’®*) for large m’. we may construct the weakest-
link approximation

H,(cg6)x1—exp|—(m HO[(ga)—pH 7). =0 (44)

In essence we are assuming that the composite strength 1s given by the weakest of m” = m/f8
cross-sections spaced fi 0, apart. where the parameter 8 is chosen so that the strengths at
these cross-sections are effectively i.i.d. normal random variables. and there is a sufficient
number of them to provide a good representation of the weakest-link effect. Now in order
to study quantiles like the median chain strength (median strength of the composite). we
consider a solution a4,, - to

O*([(0,, . o )=y 2IF) = om (43)

where { > 0 is a constant. An asymptotic resuit for [(o,, .0 )— /¥ (with p¥ =0,

in

vk =g = 1)is given in Cramér (1946). and vields (when rescaled to our case)

0, 0= = 2 log (m))]

— tog.tlog, (m")) +log. (4m)!. 2[2log. (m")]" ]
—log, (log. (<)) [2tog. (m)]" -
+O(1-log, (m ). (46)

For the median. o}, (composite stress at probability of failure of | 2), { corresponds to
—log (1 2) = log.(2). and using (46) we may write
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¥, o x put—® 2log (m M) -

— tlog, (log, (m fi)) +log, (4n)} /1 2[2log. (m/p)]' *}
—log, (log, (2)) [2log. (mif)]"' 7). (47)

It 1s interesting to note that in the statistical theory of extremes for the minimum of
m’” = m'f. i.i.d. normal random variables with mean ¥ and standard deviation ;. (Lead-
better er al.. 1983) the right-hand side of (46) with log. (log.({)) replaced by log.
(log, (e)) = 0. which we call b,, .. ought to correspond to b,,, in (37b). The parameter a,, ,
ts just a,,, with m" in place of m. Apart from the difference in m vs n1’ these quantities are
not quite the same. Also for the median 7 ,. the formulae (38) and (47) are not quite the
same in structure (even after accounting for the additional parameter f in (47) through
m’ = ). We can. however. employ the following expansions for s > f in (37b). namely

Rlog. (m B~ = [2log, im) —2log, (f)]' -
x [2log. (m)]' 7 —log, (B) [2log, (m)]" -, (48a)
log, log, (m i) = log log, (m)—log (f) log. (m) (48Db)

and

Rlog. (m By '~ =[2log. (m)—2log. (f)] '~
x [2log. ()] U +log (SY/[2log, (m)]] (48¢)

to facilitate comparison. Substituting (48a) to (48¢) into (47) and comparing like terms
between (47) and (38) (upon ignoring terms of order O(1:[log. (7)]* ) or smaller) suggests
that the quantity —log, (s*n:2) corresponds to — [log.log. (m)+log. (4n)} /2 —log.(f)
vielding

fx s*n' - [4log, (m)]

= 0.44315* log, (m). (49)

Thus. the difficulty that we see in comparing the two methods, a minimum in a Gaussian
process vs a simple weakest link structure in terms of a chain of " = m/f bundles, is that
there really i1s no obvious value for f§ that can be identified for use in the weakest link form.
Of course in both formulae for the median, namely (38) and (47), the term
v#[2log, (m)]' - strongly dominates the asvmptotics so in that sense the precise choice of
f 1s of minor significance as the two medians will agree in magnitude as m grows very large,
but the precise value is important for smaller m” = m. 8. Later. we would like to rescale
Monte Carlo simulation results for long composites. and this lack of simple correspondence
creates small ambiguities. For example. (49) suggests i = 0.4431s* form = 3and ff = 0.13s*
for m = 30. if this method of comparison has any validity.

Pursuing this anomaly a little further. if we consider the quantity log.(log.
(m) {2[2log. (71)]' 1. which is the term in (47) not appearing in (38), we calculate the
values 0.133.0.194,0.224 and 0.244 for " = 5, 10, 20 and 50, respectively. and these values
are much smaller than those for [2log, (#1)]}' ", So. except for the smallest values of m
(where the use of asymptotics would be questionable). this quantity is about 0.2. Even for
m = 1000 1t is only 0.26 and it remains so up to about m = 100.000 after which it slowly
decays to zero. Thus, this ambiguity in pinning down an effective value of ff in a comparison
of the two methods amounts to little more than a small. fairly constant shift in the predicted
median. We will consider this more in later numerical examples.

In any case. to compare these results to those of Monte Carlo simulation, we consider
the ‘reverse weakest-link transform’
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D, ([(a/o) = i) = 1= 1 - H, (c7a)} " (50)

where H,, .(0,0,) 1s the empirical distribution function calculated from the data of the
Monte Carlo simulation at given length L = md, = (m’f1)d,. The idea is to adjust f§ to
superimpose @, ([(o/0,.)— 1 H/v7) onto a O([(57a,.) —uH/3¥*), the asymptotic normal dis-
tribution function for the strength of a cross-section, and achieve a good fit. In the next
section we carry out various comparisons.

3. COMPARISON OF THEORY AND MONTE CARLO SIMULATIONS

In earlier work Ibnabdeljalil and Phoenix (1995) have developed a Monte Carlo
simulation program for the failure of the composite. Its main features are summarized here
as follows: the composite is assumed to have n fibers in parallel. and its length is L = m d..
where m > 0 1s an integer. It is partitioned into n,,, slabs of length ¢, such that

Hopp = 110, 0, (51)

pan
Also, n,, is abbreviated as n,. being the number of slabs of length J, in a characteristic
length &,. Note that

g, =0an," =a,l,d,) " (52)
which is the Weibull scale parameter for strength at length o,. In total there are nn,,, fiber
elements in the composite. Generally, 7, must be chosen with some care. and to some extent
a suitable value depends on the fiber shape parameter p and the length L =n,,,0,. In
particular. as a composite specimen fails during a simulation run. the actual slip lengths
should turn out to be about 10 times d, or more. This is because the stress on a fiber element
will be taken as constant over its length, the stress will be evaluated at the element’s center
and the failure will occur there also.

Simulating the tensile failure of one composite “specimen’ of length L (one realization)
begins with determining »n, ,, realizations of the fiber strengths sampled independently from
a Weibull distribution at length ¢, that is. from the distribution function

F,n(o-) = lfexp 1 A(o‘,y /n)(n— (711))’:- o= 0. (53)

and then normalizing cach strength by o,. (This is equivalent to sampling from a Weibull
distribution with shape parameter p and scale parameter (n,)'*.) One realization of the
failure of a composite specimen involves the following steps: (1) an applied stress equal to
the strength of the weakest fiber element is applied uniformly to all nn,,, fiber elements.
This causes the weakest element to fail. (2) The stress on that element is set to zero and its
former stress is redistributed equally onto all fiber elements in the transverse plane (slab)
of the break. (Generally this will be all elements that are not broken or slipping within the
slip zone of another break along the same fiber.) Also. all fiber elements in the slip zone of
this fiber break along the same fiber will experience a reduction in their stresses proportional
to their center distances from the break divided by the slip length. These elements will see
no further increases in stress throughout the duration of the test. Furthermore the lost
stress of any element is distributed equally onto all fiber elements in the same transverse
plane. so their stresses increase. (Generally these are again elements surviving and not
slipping.) (3) The new stresses on all the fiber elements are then checked to see if any have
been overloaded. that is. their strengths have been exceeded. If overloaded elements are
found. then the most severely overloaded element is broken. and the stress is redistributed
according to step (2). Then the new element stresses and strengths are compared again, and
it any elements are found overloaded. the most severely overloaded (highest difference) is
failed and the stress redistributed again. This process of failing overloaded fibers and
redistributing stress is repeated until no overloaded fiber elements are found and the
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composite is in a stable state. (4) The stress on the composite is then increased producing
proportional increases on every non-broken and non-slipping fiber element, and the increase
1s just enough to overload and break one element. This element is broken, and, if possible,
the process repeats beginning with step (2). (5) Eventually, at some stage of iteration of the
element breaking and stress redistribution process all the fiber elements in some transverse
plane will be either broken or slipping. At that point, the composite can no longer take any
additional load. and. thus, is considered failed. The tensile strength of the specimen is then
taken as the stress level just prior to this discovery. Several hundred realizations of the
strength of a composite of length L = mi 9, are obtained by this procedure. Note that mesh
sensitivity tests are conducted tfor the various p values of interest in order to confirm an
adequate mesh size whereby the results are insensitive to further refinement.

In summary, the Monte Carlo simulation program is free of certain assumptions made in
the analysis with respect to (i) ignoring small undulations in the stress profiles of fibers outside
exclusion zones. which actually occur for composites when the number of fibers # is small, and
(i1) assuming a normal distribution for the strength of a composite cross-section.

We now compare some results from the simulation program to those from the theory.
The comparison is first carried out for a typical Weibull shape parameter p = 3. for n = 50
fibers in the composite and for composite lengths of m = L3, = 2, 5. 10, 20. and 50. In
total these simulation results took several hundred hours of CPU time on a Sun (Sparc 2)
workstation. For n = 50. cases of m significantly larger than 50 are too time consuming to
carry out.

Figure 4a-e shows reverse weakest-link scaling of the simulation results. using (50),
for the cases $0, = 0.256,.0.49,,0.79,. and o,_. Here the idea is to estimate an effective link
length f33,. Also shown is the theoretical Gaussian (normal) approximation developed in
Section 3. It is remarkable how well these empirical distributions actually superimpose for
n ranging from 2 to 50. Given the discussion at the end of Section 4 regarding ambiguities
in defining ff in a weakest link view, this consistency might seem surprising. However it was
pointed out there that the term causing ambiguity has an effect of about 0.2, ~ 0.009 for
n = 50 and the range of m under consideration as compared to the mean u¥ = 0.74. This
would be barely noticeable being of the order of one division on these plots, which is
actually the order of the variation in the simulation data. It would seem that 0.74, or
p = 0.7 of Fig. 4c gives the best agreement to the theoretical Gaussian plot in terms of
matching the overall slope and location. However. the lower tail is the most important
region on these plots when considering the behavior of long composites and their reliabilities
(lower tail behavior) through extrapolation. Later plots suggest that § = 0.4 is perhaps
more appropriate for the lengths considered. It turns out that the corrections to the mean
and standard deviation discussed at the end of Section 3 are important in these plots and
noticeably improve the resolution. For n = 50 the finite size corrections to the mean (34)
and standard deviation (36) are 2.5% and — 16%. respectively.

Figure 5 shows the relationship between median lifetime and m = w’fi = L/J,. This
figure amounts to a rotation of Fig. 4c clockwise by 90 . Also plotted are the theoretical
medians (38) and (47) by the two methods. The Gaussian process version (38) appears to
be the less accurate of the two in comparison to the simulation data, though it has no
adjustable parameters. Agreement is good to values of m up to 10*, and one has confidence
that extrapolation would be valid to at least 1 = 10° which is far beyond the present
capability of Monte Carlo simulation alone. Note that at » = 100,000, which would
represent a long cable (if &, = | mm, L = 100 m), the median strength is down by 18%.

Figure 6 shows a plot of the composite strength distribution., H,, ,(g/c,), for the case
n =50 and m = 50 on double exponential coordinates on which (37) plots as a straight
line. Also shown is the data from Monte Carlo simulations as well as the weakest-link
approximation (44) based on Gaussian (normal) lower tails for elements of length §4,
where f is taken as 0.4. The double exponential approximation (37) is clearly conservative,
especially in the lower tail as mentioned earlier. The weakest-link approximation (44)
clearly performs much better.

Figure 7 shows a family of plots for the composite strength distribution H,, ,(d/0,)
for m = 5. 10. 20, and 50. Monte Carlo data for each case is shown together with the
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Gaussian;weakest-link approximation (44), again using § = 0.4. The agreement is excellent,
though one can see the slight tendency to requiring a larger f value (say 0.7) for the case
m = 5 near the median.

Figure 84 and b shows plots of the composite strength distribution, H,,,(c/a,), for a
much smaller number of fibers » = 15, and for the lengths m = 5 and 190, respectively.
Again, double exponential coordinates are used on which (37) plots as a straight line. Also
shown is the data from simulations as well as the Gaussian;/weakest-link approximation
(44) based on elements of length 8, where again f is taken as 0.4. The simulations on Fig. 8b
required hundreds of hours on a Sun (Sparc 2) workstation. Again, the double exponential
approximation (37) is clearly conservative especially in the lower tail, as mentioned earlier,
and the weakest-link/Gaussian approximation (44} clearly performs much better. With a
smaller number of fibers the drop in median strength corresponding to increasing m from
5 to 190 is substantial ( from (.70 to about 0.61). There is also some indication on Fig. 8b
that an even smaller value of # would be appropriate as most of the simulation data lies to
the left of the approximation (44). Also the data suggest that the assumption of a Gaussian
fower tail of the link distribution is beginning to break down for this small value of » at
larger m. This is understandable since, eventually. the deepest part of the lower tail is not
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really Gaussian at all. since strengths cannot be negative. In any case, deeper into the lower
tail, the approximations witl tend to be more conservative.

6. CONCLUSIONS

We have developed an analysis for the probability distribution for the strength of a
relatively long. brittle fiber brittle matrix composite. The analysis came in two versions:
one was based on a weakest link model in terms of short. statistically independent composite
elements. each of which had an approximately Gaussian (normal) distribution for strength ;
the other was based on weuakest cross-section analysis in terms of a Gaussian process
formulation for cross-section strength vs longitudinal position along the composite. These
two methods gave comparable results, though the Gaussian process version with no adjust-
able parameter § tended to be less accurate and more conservative. The analytical pre-
dictions embodied in the most accurate form (45). and the simpler but less accurate form
(37). were compared favorably to numerical results from Monte Carlo simulation. Also.
quite simple formulas resulted for the size effect in the median strength both in terms of
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Fig. 8. Comparison of Gaussian weakest-link version (44) ot 4, ,(¢.¢,) with double exponential
version (37) and Monte Carlo simulation results on double exponential coordinates for n = 15,
p=5Sand f =04 (a)m=35.(b)ym=190.

composite length and number of fibers in a cross-section. To achieve high accuracy it was
necessary to have extremely accurate results for the asymptotic mean and standard deviation
of the strength at a composite cross-section.

Values of f0_from 0.7, to 0.4_seems reasonabie in view of the fact that the effective
exclusion zone around a break is about s* 9, = 0.88 . so the unloading length is half this
at 0.444,. On the other hand. in the Gaussian process version. as m1 — = only the local
decay of I';(s) near ¢ = 0 is used. but the quadratic approximation (26) substantially
overestimates this decay (underestimates the true covariance) for larger d. say é = 0.54,,
and this may be the cause of disagreement for moderate values of m where the Gaussian
process version seems conservative. At the same time, comparison between the two versions
against Monte Carlo simulations suggested that f cannot really be viewed as a fixed
parameter, but rather a parameter whose value decreases slowly with increasing m1, meaning
that the effective number of embedded links per unit length actually grows slowly. This is
also a conclusion suggested by (49) which suggests that § must eventually decrease as
| log.m. Of course (49) can be seen to under-predict the effective values of § found here,
but it is based on an asymptotic analysis for large m many orders of magnitude beyond
what can be simulated. In any case agreement between theory and simulation is excellent
lending confidence to extrapolations of median strength and high-reliability (lower tails of
the distribution) to larger composites.



Size etfects in distribution for strength 565

If the calculations were repeated for smaller p. say p < 3, then we would have 10 use
i and ¥ in place of gf and »**. that is. abandon the corrections for small » since the

approximations for these will be inaccurate for small p. This would reduce the accuracy for
smaller #. but fortunately in the direction of making the results more conservative.

Lastly we point out that in a time dependent version of the problem. Ibnabdeljalil and
Phoenix (1995) concluded that under similar circumstances the effective link length was
about 0.2 9., which is half the value arrived at here. They. however. had no estimates of the
asymptotic mean and standard deviation, and the estimate 0.2 5, was based on getting the
straightest plot on lognormal coordinates in the reverse weakest-link transform. However.
differences between § = 0.2 and /i = 0.4 are minor.
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APPENDIX

We now justify the approximation of g*(p) tor small p given by (30). Only some of the more difficult steps
will be given in detail. The Taylor series expansion of g*(p) about p = 0 can be obtained by computing the nth
derivative of

Tt

1 = A(p) Yoo c\p{

Ny

_VI 1‘!’1)'_,:);)/{( Y.oydy (Ala)
2

with respect to p and evaluating it at p = 0. where

Rl

Aty = 7 . (Alb)
| - 4

PRIV pi= (1 gy pY2epil ¢ )Y (Alc)
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2 Ml—et d
WiY.p) =ex dr . Al
P L\p[ I+p 1, { ] ( )
and
Y*(p) = (s*) " 2. (Ale)

It should be noted that s*{p) — x as p — 0 so that Y*(p) — % as p — 0. Also. the integrand in (Ala) vanishes
exponentially fast for all p = 0 us ¥ — . After some straightforward but tedious calculations we find

dp* [ 3
El;T ) = —w ¢ "Inrdr— 5 (A2)
The integral is the well known Euler -Mascheroni constant - = 0.5772156649 .. .. The evaluation of (d"u* 'dp”)|, .0

1s carried out in the same way. except that the calculation becomes extremely messy. The result is

d et

=> L. {A3a)
dp v
where
L =C=-211=In2)—(n2)". {A3b)
5 3 3ln 53 dn2¥ 3 (In3) .
b= [ %% s amys oy eyt } (A30)
| 1 1
L=y b t ——1. (A3d)
‘ - »ox
1{ 5 Cor
I+ w’(lnl)*+2;-lnl 4 671441_;7—(*771112%-1) 1
L, :2<‘ . (A3e)
‘ h) SN P 3 n2)*  (In3)°\
7’lnf+,*3(\ e e — i
2 \’) T e 2 2 2 /J
and
L.=2(-1 »+2In3-3In2). (A3f)

Note that (d-p* dp)|, , is independent of L. due Lo a cancellation of terms when L. is added to L. In carrying
out that calculations to yield (A3). there are various integrals that must be evaluated that are not available in the
literature. These integrals are recorded below :

X AR I fa+l ;
' e [ (——/5———)dz]d;-zr;lnk‘-’i—). (Ada)

/ i u

' . (* = (’f!:,l,;‘)_ (A4b)

e o]

- - as 1y (na® [l nj:
' (Inyie "‘(—L)m = ln((t—)ﬁ (—n;” 7M. (Add)
i v+1In
l ¢ “invdy = S f’J_ (Ade)
Jo o
[ | \
¢ “yinydr=-—[l--lIndl. (A4f)
Jo a”

C . i . .o
. ¢ “(lnyy-dr = [(ln )" + 20 lna+ + %] (Adg)
. a
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Ce [ /e , 1)
| H (f ¢ )dr}d,r: v O (Adh)
Jooo VoL T ST

and

(27

{ ' (I 716 )d’] dr (Adi)

where ¢ > 0 1n all the expression above. It should be noted that « = 2 in the caleulations leading to (A3). These
Integrals are evaluated using combinations of integration by parts. change of variables and differentiation of the
integrals with respect to a parameter (i.e. «). With the exception of the integral

|.“v ¢ w(\l *IIC y)lﬂlﬁ[: (%‘? /:deJd_\ :;I “/

I

all the other integrals can be express in terms of the Euler Mascheront constant ; and elementary functions. The
series representation of the integral

V’ N
R 4

converges extremely rapidly tor « = 2. and can be easily computed o any degree of accuracy.
To save space. only two of the more difficult integral identities are shown below. We first verify (Adg). Let
loy = (e “rdiand note that (477 dx”)|, = fs ¢ "(ny)"dy. Furthermore. a change in variable leads to

oy =a ° ! | e widu = a t 'lir+ 1)

Differentiating this expression twice with respect to z and cvaluating at » = 0 vields

d-r, ! - - P
- = [nw - 207 HIna+T7(hH).
da i o @
Using the well known identities [ (1) = — - and I'"(1) = = ~ (7~ 6) completes the prool of (Adg).

Next. we verify the integral (Add). We let

then we tind that

47 _ (Invye (1 ydy
daiJH nvje e ydy
Using
= ¢ nrds
we tind that
dJ v Inu : In{u+1)
T AL
da a a a1 a1

Solution of this differential equation gives
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Ioe fa+ 1y (Ina)  [In(e+ DI
Jlay = Iniye ’”(W"‘ )d,l' = -in ((!' - )+ (na_ lnfet DI
! u

o \ . e \

N B

The constant of integration is set to zero since J(¢ = » ) = (). thus concluding the proof of (A4d).
Lastly. the first three terms of the Taylor series expansion of u*(p) are given by

dpe*

1 d-p*
P=y
dp - 2 dpt .

Wrp) = )+ o (A5)

Using (A2) and (A3) the final result becomes

1534948649 ,
@R = 1 —0.922784335p - oL 0t L O, (A6)
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